Transient Photocurrent Response of Plasmon-Enhanced Polymer Solar Cells with Gold Nanoparticles

نویسندگان

  • Yi Fang
  • Yanbing Hou
  • Yufeng Hu
  • Feng Teng
چکیده

In this work, the transient photocurrent of the plasmon-enhanced polymer bulk heterojunction solar cells based on poly(3-hexylthiophene) (P3HT) and [6,6]-Phenyl C61 butyric acid methyl ester (PCBM) is investigated. Two kinds of localized surface plasmon resonance (LSPR) enhanced devices were fabricated by doping the gold nanoparticles (Au NPs) into the anode buffer layer and inserting Au NPs between the anode buffer layer and the active layer. We probed the dynamics of the turn-on and turn-off responses to 400 μs square-pulse optical excitation from the 380 nm and 520 nm light-emitting diodes (LED) driven by an electric pulse generator. The transient photocurrent curves of devices with Au NPs at different positions and under different excitation wavelength are compared and analyzed. The charge trapping/detrapping processes that occurred at the interface of Au NPs and the active layer were observed; these exhibit an overshoot in the initial fast rise of photocurrent response. Our results show that the incorporating position of Au NPs is an important key factor to influence the transient photocurrent behaviors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation

Plasmonic hot-electron generation has recently come into focus as a new scheme for solar energy conversion. So far, however, due to the relatively narrow bandwidth of the surface plasmon resonances and the insufficient resonant light absorption, most of plasmonic photocatalysts show narrow-band spectral responsivities and small solar energy conversion efficiencies. Here we experimentally demons...

متن کامل

In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy

In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduce...

متن کامل

A Simple Optical Model Well Explains Plasmonic-Nanoparticle-Enhanced Spectral Photocurrent in Optically Thin Solar Cells

A simple optical model for photocurrent enhancement by plasmonic metal nanoparticles atop solar cells has been developed. Our model deals with the absorption, reflection, and scattering of incident sunlight as well as radiation efficiencies on metallic nanoparticles. Our calculation results satisfactorily reproduce a series of experimental spectral data for optically thin GaAs solar cells with ...

متن کامل

Highly-Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells Created by Means of Dry Plasma Reduction

Plasmon-assisted energy conversion is investigated in a comparative study of dye-sensitized solar cells (DSCs) equipped with photo-anodes, which are fabricated by forming gold (Au) and silver (Ag) nanoparticles (NPs) on an fluorine-doped tin oxide (FTO) glass surface by means of dry plasma reduction (DPR) and coating TiO₂ paste onto the modified FTO glass through a screen printing method. As a ...

متن کامل

Investigation of localized surface plasmon/grating-coupled surface plasmon enhanced photocurrent in TiO2 thin films.

We fabricated plasmonic gold nanoparticle (AuNP)-TiO2 nanocomposite films and measured the photocurrent that originates from the water-splitting reaction catalyzed by the AuNP-TiO2 nanocomposite photoelectrocatalytic (PEC) electrode. The localized surface plasmon resonance (LSPR) of the gold nanoparticles affected the generation of photocurrent by TiO2 upon illumination with visible light. Elec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015